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The Berezinskii-Kosterlitz-Thouless-type continuous phase transition observed in the three-spin interaction
model is discussed. The relevant field theory describes the topological defects involved and enables us to
perform the renormalization-group analysis. Based on it, we shall propose the finite-size-scaling ansatz for the
helicity modulus, which exhibits the exponent �̄=3 /5 for the correlation length in the disordered phase. We
perform the Monte Carlo simulations to confirm the ansatz. Also, we argue its relevance to the ground-state
phase transition in the quantum spin chain.

DOI: 10.1103/PhysRevE.77.062101 PACS number�s�: 64.60.�i, 05.50.�q, 05.70.Jk

I. INTRODUCTION

The universality observed in the phase transitions is one
of the most important phenomena to understand the interac-
tion effects. For the two-dimensional �2D� critical systems
other than those with intrinsic anisotropy, it is pronouncedly
expressed by the conformal symmetry, and the corresponding
field theories are characterized by the central charge c �1�. In
the case c�1, it appears to almost specify the universality
class, i.e., the possible set of the critical exponents �2�. How-
ever, for larger values of c, there still exist considerable ef-
forts to understand their universalities, which are possibly
related to the exotic phase transitions observed in the com-
plicated systems. It is widely known that the frustration ef-
fects sometimes bring about the critical ground states as well
as the finite-temperature critical points with larger values of
c�1. Thus, they have been gathering great attention over the
years. On another front, the multispin interactions appear to
include the same effect: The exactly solved Baxter-Wu
model, consisting of the three-Ising-spin product interaction,
is the most basic one �3�, which belongs to the same univer-
sality class as the four-state Potts ferromagnet �4�. The Ising
and the four-state Potts criticalities are of c=1 /2 and 1, re-
spectively. Thus, the multispin interactions can be expected
as another source to bring about the larger value of c.

In this paper, we investigate the three-spin interaction
model �TSIM� introduced by Alcaraz et al. �5�. Suppose that
�k , l ,m� denotes three sites at the corners of each elementary
plaquette of the triangular lattice � �which consists of three
sublattices �a, �b, and �c�, then the following reduced
Hamiltonian expresses a class of TSIM:

�H = −
J

kBT
�

�k,l,m�
cos��k + �l + �m� . �1�

The angle variables �k� �0,2	� are located on sites, and the
model parameter, the temperature T, will be measured in
units of J /kB. In the previous paper �6�, we discussed an
effective field theory for a related model �i.e., its clock ver-
sion� and predicted the one with c=2, which was followed
by the numerical confirmation based on the transfer-matrix
calculations. Here, we perform the renormalization-group
�RG� analysis to predict the Berezinskii-Kosterlitz-Thouless
�BKT�-type �7,8� phase transition between the critical and

the disordered phases. In particular, we shall propose the
finite-size-scaling �FSS� ansatz for the helicity modulus rep-
resenting the stiffness of the corresponding interface model
�9,10�. The discussion goes on in a parallel way with the c
=1 BKT transition case �11�, and the ansatz includes the
exponent �̄ for the correlation length. However, since the
topological defects involved �for its definition, see below�
are not described by the scalars �vortexes�, but by the vectors
�5� like the Burgers vectors for the dislocations in the 2D
melting �12,13�, some modifications occur in the RG analy-
sis, and then bring about �̄=3 /5. The FSS ansatz permits us
to check it directly by the numerical method, and then pro-
vides solid evidence to support the theoretical prediction on
the instability in the c=2 criticality.

II. THEORY

The fact that the system is invariant under the global spin
rotations, �k→�k+�
=a,b,c�l��


�
�k,l, with the condition
�a+�b+�c=0 �mod 2	�, is important. Although this U�1�

U�1� symmetry defined by two independent phases, say
�a,b, is not broken and gives the low-temperature critical
phase, it specifies the possible type of perturbations to bring
about the high-temperature disordered phase. According to
Ref. �6�, the following vector sine-Gordon Lagrangian den-
sity is relevant to the effective description:

L =
K

4	
��i��x��2 +

y1

2	a2 �
�N�=1

:eiN·��x�: . �2�

The symbol : : denotes the normal ordering and means the
subtraction of contractions of fields between them; � � indi-
cates the norm of the vector, and a gives a short-distance
cutoff. The parameter y1 stands for the effective fugacity to
control the appearance of topological defects �6�. ��x� is the
two component vector field attached at the position x in the
basal 2D space, so the first term represents the interface
model, where K gives its stiffness. The above symmetry is
realized as the periodicity of the field, i.e., �	�+2	e�

��=1,2�, where e1,2 are the normalized fundamental vectors
of the so-called repeat lattice R �14� isomorphic to the tri-
angular lattice �6�. Then, the interface can acquire the dis-
continuity of the amount 2	N with N�R. The second term
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consists of the vertex operators where iK�i�=�ij� j�, and
creates the shortest discontinuities among possible ones �i.e.,
the length �N�=1�. From the RG viewpoint, these topologi-
cal defects controlled by y1 are enough to be kept in the
theory because these are the most relevant ones �see below�.

The reason why we have started with the Lagrangian den-
sity instead of the vector Coulomb gas �CG� representation
�5� is that, for the RG analysis we shall employ the confor-
mal field theory �CFT� technology, which requires the scal-
ing dimensions of local density operators and the operator-
product-expansion �OPE� coefficients among them. While
details of their derivations on the Gaussian fixed point �i.e.,
the first term� will be given in our future report �15�, here we
shall summarize the relevant results to the present case.
Since the low-temperature critical phase corresponds to the
Gaussian fixed line parametrized by K, the so-called M op-
erator �17�,

M�x� 	
Ka2


8
��i��x��2, �3�

which shifts the system along the line, is the most important
one. Since �M�x�M�0��0= �a /r�4 independently of K �r is
the distance between 0 and x�, it is truly marginal. On the
other hand, the normalized form of the second term in Eq.
�2� is given as

W�x� 	
1

6

�
�N�=1

:eiN·��x�: , �4�

whose dimension is xW	K�N�2 /2=K /2. Thus, W becomes
marginal at K=K� �	4� and brings about the transition to the
disordered phase for K�K�. For later RG argument, the ex-
pansion of the operator product W�x�W�0� is crucial. While
there are 36 terms in the double summations with respect to
the vector charges �say N and N��, the following two cases
are enough to be taken into account: �i� N+N�=0 and �ii�
�N+N� � =1 �the other terms are irrelevant here�. After some
calculus using the complex coordinate and employing the
chiral decomposed form of fields as usual, we find that the
cases �i� and �ii� mainly give M and W, respectively. Then,
the expression of the OPE becomes as follows �15,16�:

W�x�W�0� �
xW

2

�a

r

2xW−2

M�0� +
2

6

�a

r

xW

W�0� + ¯ ,

�5�

where “¯” includes the unit operator and the stress tensor as
well as less singular terms. Consequently, we can obtain the
OPE coefficients CWWM=xW /
2 and CWWW=2 /
6. The
significance of this result is as follows: Due to the triangular
lattice structure of R, three vector charges at the angle of
120° to each other �e.g., e1, −e1+e2, and −e2� satisfy the
vector charge neutrality condition, and then provide the non-
zero value of CWWW. This brings about the difference from
the BKT transition �see below�.

Now, the RG equations are derived as follows. Suppose
that the critical fixed point is perturbed by the marginal sca-
lar operators O��x� �normalized� as L=L0

�+����O� /2	a2,
then, the RG equations for the change of the cutoff a→ �1

+dl�a are given by d�� /dl=−�1 /2���,
C��

� ���
 within the

one-loop calculations �18�. For the present case of the cou-
plings y0 �	K /K�−1� and y1, the equations become

dy0�l�
dl

= − 3y1�l�2,
dy1�l�

dl
= − 2y0�l�y1�l� − y1�l�2. �6�

Whereas these are similar to the BKT RG equations �7,8�,
the y1

2 term emerges in the second equation due to the non-
vanishing coefficient CWWW �see also �5��. Now, we shall
discuss its consequences. Like to the BKT transition case,
these equations possess a conserved quantity, but unlike to
the case, it is given as a homogeneous expression of degree
five in y0 and y1 as

�3 	 �y1 − y0�3�y1 +
2

3
y0
2

�� � R� . �7�

Figure 1�a� gives the contour plot with arrows to show the
trajectories of the RG flows. Then, we see that the line y1
=y0 is the separatrix between the critical and the disordered
phases, so the small parameter for the phase transition can be
introduced as y1�0�= �1+ t�y0�0�, with �t��1. Now, with the
aid of the conservation law, we can analyze the RG flows and
obtain the following form:

y0,1�l� = ���3/5g0,1
� ����3/5l + �t� , �8�

where the superscript “�” indicates the sign of � and �t is a
certain function of t given by the initial values of the cou-
plings �19,20�. This form exhibits a kind of self-similarity
that the trajectories with the initial conditions having the
same values of t �e.g., all points on the red dotted line in Fig.
1�a�� fall into a single curve independently of � �the red
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FIG. 1. �Color online� �a� The contour plot of �3 indicating the
RG flow. Numerical values near the contour lines in black denote
105
�3. The straight lines in color show y1�0�= �1+ t�y0�0� for
some values of t: 0.30 �red dotted line�, 0.04 �pink short-dashed
line�, �0.03 �green dashed line�, and �0.20 �blue dot-dashed line�.
��b� and �c�� The scaled couplings y0,1 / ���3/5 are given as functions
of the scaled variable ���3/5l.
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dotted line �a numerical integration� in Fig. 1�b� or 1�c��, and
that the t dependence can be absorbed by changing the origin
of the scaled variable according to �t �the red dotted line
overlaps with the pink short-dashed line�. The explicit forms
of g0,1

� are complicated while those in the BKT transition are
the trigonometric or the hyperbolic functions �19,20�. Nev-
ertheless, we can extract some properties because they share
the basic feature with the BKT transition case. On the sepa-
ratrix t=0, the solution is simply given
by y0,1�l�=y�l�	1 /3�l+ lTc

�, with lTc
	1 /3y�0�. Around

it, we find y0,1�l��y�l�− ��1�2� /4��3 /5�2/3� /y2/3�l� when
�t�3/5�l / lTc

��1 is satisfied �the upper sign refers to the
former�. Note that these expressions exhibit the nonsingulari-
ties of y0,1�l� at �=0 and also that they can be regarded as
the expansions of the following scaling forms:

y0,1�l� � �l + lTc
�−1�0,1���l + lTc

�5/3� �9�

with �0,1�X��1 /3+O�X�. To cast these into the forms com-
patible with Eq. �8�, we should further replace lTc

by a tem-
perature dependent parameter lT	�t / ���3/5. However, since
lT means the logarithmic scale to obtain the initial values
y0,1�0� from y0,1�� lying almost on the separatrix, it is a
smooth function and can be represented by its value at the
transition point lTc

, near Tc.
Now, we shall estimate the correlation length from Eqs.

�8� and �9�. When we write the characteristic logarithmic
scale as lF satisfying the condition y0�lF�=−�, then ��T�
�exp�lF�. Figure 1�b� exhibits g0

+���1.4�=−�, and � is pro-
portional to T−Tc near Tc. Thus, we obtain ��T�
�exp�const / �T−Tc��̄�, with the exponent �̄=3 /5. Unlike to
the BKT transition case �̄=1 /2 �7,8�, our theory predicts the
above exponent, which is attributed to the nature of the to-
pological defects characterized by the vector charges, and
more precisely to the nonvanishing OPE coefficient CWWW.
However, our result also disagrees with the previous one
based on the vector CG representation �5�. Therefore, the
numerical evidence to support our theory is desired.

In the remainder of the paper, we shall provide the evi-
dence with the use of the Monte Carlo �MC� method. For
this purpose, here we explain the FSS property of the helicity
modulus to focus on below. The helicity modulus is defined
as the response of the free energy against the long-
wavelength ��� twist of the local order field, which is pro-
portional to the square of the wave number q	2	 /�, i.e.,
��T�	 limq→0 �2f�T ,q� /�q2 �9,10�. For the present model
with the U�1�
U�1� symmetry, the twist can be imposed by,
for instance, ∀ l��b ; �l→�l+q ·xl and ∀ m��c ; �m
→�m−q ·xm, where xl �xm� is the position vector of the lth
�mth� site and q̂	q /q is a unit vector in the x direction of
the basal 2D space. Then, one finds the following expression:

���T� =�−
1

2
H −

1

T
� �

�klm�
sin �t q̂ · xlm�2� , �10�

where �t	�k+�l+�m, xlm	xl−xm, and � is the 2D volume
of the system. While this is useful for numerical estimations
of �, its theoretical expression is also obtained as follows.
According to Ref. �6�, the above twist corresponds to the
following shift in the vector field: ��x�→��x�+q ·x�−e1

+e2�, which then brings about the increase of the Gaussian
part in the free energy density �TK /2	��q2 /2�. For T�Tc,
we can renormalize the effects of the topological defects, so
that the helicity modulus in the full theory is given by
��T�=TK�l=�� /2	. As usual, the ratio 	��T� /2T exhibits
the universal jump from 1 to 0 at T=Tc in the thermody-
namic limit although it is rounded off in the finite-size sys-
tems. Relating to this, Harada and Kawashima performed the
MC simulations of the 2D quantum XY model, and gave the
FSS analysis of the helicity modulus to confirm the BKT
theory being valid there �11�. According to their discussion,
here we propose the FSS form for the present phase transi-
tion: For the finite-size systems with the linear dimension L
near Tc, l+ lTc

and � in Eq. �9� are replaced by the logarith-
mic scale ln�L /L0� �L0 could depend on the temperature� and
T−Tc, respectively. Then, we obtain

	��T,L�
2T

− 1 =
�0��T − Tc��ln�L/L0��5/3�

ln�L/L0�
, �11�

where Tc and L0 are the parameters to be determined based
on the FSS ansatz.

III. NUMERICAL CALCULATIONS

Here, we shall provide the MC data of the helicity modu-
lus and its FSS analysis �the details of our simulations will
be given elsewhere�. Using the standard Metropolis algo-
rithm, the systems of sizes up to L=384 were treated. The
107 MC steps �MCS� were used for samplings after the 106

MCS for equilibration. At each temperature, we performed
the independent runs up to 64 so as to attain reliable statistics
of data. In units of the squared lattice constant a2=1, the
volume is given as �=L2 /�, where � �=2 /
3� is the geomet-
ric factor of �. Then, we obtain the helicity modulus given in
Fig. 2. As expected, it exhibits the steep decrease and crosses
the straight line 2T /	 �see the circles for L=384�. Since �
stands for the stiffness of the interface, its reduction to 0
indicates a kind of melting. The inset gives the magnified
view near the transition temperature, where 	� /2T is plotted
against T. Thus, the crossings with the dotted line provide

0 1 2
0

1

0.91 0.92 0.930.96

1

1.04

T

Υ

24
48
96
192
384

πΥ
/2

T

FIG. 2. �Color online� Temperature dependence of the helicity
modulus. The solid line exhibits 2T /	, and the filled circle is
��0�=�. The inset gives the magnified view near the transition
temperature, where 	� /2T is plotted against T.
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the finite-size estimates of Tc, Tc�L�. In Fig. 3, we show the
FSS plot of �. According to Eq. �11�, the parameters Tc and
L0 were searched until the best collapsing of the scaled data
is achieved. Actually, we performed it by eye and obtained
the values Tc�0.907 and L0�6.5. Then, the figure exhibits
that the scaling region is narrow in the upper side of Tc: For
L�192, it continues up to about 0.25 in the abscissa �see the
diamonds and circles�. Although this is due to the limitation
on the size treated, and further to the property of � showing
the jump in the thermodynamic limit, we can check the reli-
ability of our FSS analysis as follows. As in the case of the
BKT transition, we can extrapolate the finite-size estimates
as Tc�L�=Tc���+c1 / �ln L+c2�5/3, where Tc��� and c1,2 are
the least-squares-fitting parameters. Then, we obtain Tc���
�0.905, which agrees well with the FSS result. Further, as
argued, the scaling function is theoretically expected to sat-
isfy �0�0�=1 /3. We denote this condition by the cross in
Fig. 3 and then we find the good coincidence with the FSS
analysis. With respect to the possibility of �̄�3 /5, we tried

the FSS analysis with its value, for instance, 2/5, but the
goodness of the scaling in Fig. 3 could not be reproduced
within our search. Consequently, these numerical data and
the consistencies among them strongly support our field the-
oretical description on the BKT-type phase transition ob-
served in TSIM �21�.

IV. DISCUSSIONS AND SUMMARY

We shall mention the relevance of our theory to other
systems. The bilinear-biquadratic spin-1 chain is exactly
solvable in some cases. The Uimin-Lai-Sutherland �ULS�
point is one of them, on which the low-energy excitations are
described by the level-1 SU�3� Wess-Zumino-Witten model
�c=2�, and by which the massless quadrupole and the mas-
sive Haldane phases are separated �22�. This ground-state
phase transition was clarified to be BKT-type, and in terms of
the small parameter to control the distance from the ULS
point, the correlation length is given in the identical form as
the present one �i.e., �̄=3 /5� �23�. Therefore, we think that
the phase transition discussed here may share the same fixed-
point properties with it; we shall discuss this issue more
closely in our future study �15�. To summarize, based on the
vector sine-Gordon field theory, we have discussed the con-
tinuous phase transition observed in TSIM; the FSS ansatz
for the helicity modulus was proposed based on the RG
analysis. Our theoretical predictions were confirmed by the
use of the MC simulations.
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FIG. 3. �Color online� The FSS plot of the helicity modulus.
Tc=0.907 and L0=6.5 are employed according to the best by-eye
scaling. The cross + shows the theoretical prediction on the scaling
function �0�0�=1 /3 �see the text�.
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